Section 4.6

First derivative test for absolute extreme values:
Suppose that ¢ is a critical number of a continuous function
fdefined on an interval.

a. If f'(x) >0 forallx<c and S(x) <0 for all x > ¢, then
Ac) is the absolute max.

b. If f(x) <0 for all x <cand f’(x) > 0 for all x > ¢, then
) 1s the absolute min.

Examplel: Find the dimensions of a rectangle with area
625 m* whose perimeter is as small as possible.
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Example 2: Find the dimensions arfd™area of a rectangle

with perimeter 324 cm whose area is as large as possible.
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Example 3: A farmer has 2400 ft of fencing and wants to
fence off a rectangular field that borders a straight river.
No fence is needed along the river. What are the
dlmensmns of the field that has the largest a1ea‘7

x} ] ;w/zz()f Qx?lj /4(;<)~ X(;‘MO ro?x)}
(o T Y= QY00 ~Ix A(X) = L}OOX 2 X
70}()(); 075/40"91)( )
X= (00t

=
L004E x Jpoott = (11000 0%

Example 4: If 600 cm? of material is available to make a
box with a square base and an open top, find the largest -
possible volume of the box.
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Homework: page 305 (2-6, 9-14)




Calculus Section 4.6 day 2

Cost function C(x): a function of producing x units of a
certain product. ( (X)

Average Cost function c(x): C(x)/x, cost per unit. ua(x)

Marginal Cost function : rate of change of C with respect
tox. (C) _QLQ,
Minimum average cost: marginal cost = average cost

= e (X)
Example 1: A company estimates that the cost (in

dollars)of producing x items is
C(x) = 2600 + 2x + 0.001x2.

a. Find the cost, average cost, and marginal cost of

producing 1000 items. 4
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b. At what productlon level will the average cost be

lowest, and what is this minimum cost? " e Or)

Demand function = price function p(x): price per unit
that the company can charge if it sells x units.

Revenue function = sales function: R(x) = xp(x), total
revenue for x items sold. |

Marginal Revenue function: R’, rate of change of
revenue with respect to x. d_@,

o
Profit Function: P(x) = R(x) - C(x)
Marginal Profit function: P’, rate of change of profit
with respect to x.

Maximum Profit: marginal revenue = marginal cost
R'= ¢

Example 2: Determine the production level that will

maximize the profit for a company with cost and demand

functions: C(x) = 84 + 1.26x — 0.01x? + 0.00007x°
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. // Example 3: BHS wants to get new uniforms for
basketball. They find that the average bb attendance is

400 fans when the ticket price is $5. When they lower
the price to $4, the average bb attendance rises to 550

fans.

a. Find the demand function, assummg it is linear.
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b. How should ticket prices be set to maximize revenue?
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Homework:'page 308 (43-47)




